双锥属夹套加热型干燥机,如将双锥体看作球体,则在放大双锥干燥机时,它的加热面积F(m )与球体直径D(mm)的平方成正比扩大,而球体的容积V(m )则与球体直径D(mm)的三次方正比扩大。所以双锥从小直径扩大到大直径时,它的加热面积远远比不上它的容积扩大。致使双锥加热面积F(rfl )和双锥容积V(m )的比例,随着直径D (iTlm)的扩大而比例失调,造成小规格双锥的F/V值远大于大规格双锥的F/、,值。如5 m 双锥的F/v值比0.3 m 双锥的F/V值小一半左右,约3.6m /m ,当双锥容积扩大至10 m 时,它的F/V值下降到2.5 m /m 。
双锥是一台驮着加热锅炉(加热夹套)不断旋转着的动态干燥机。大型化(大直径)传统双锥的锥体内胆和夹套外壁的壁厚都很厚,重量很重。锥体内胆一般都是不锈钢材质,而夹套外壁为碳钢。大型双锥(2~10 m )的直径在 1,600~2,600 mm,锥内胆壁厚在8~14 mm,夹套外壁的壁厚更厚。众所周知,不锈钢的热阻比碳钢大5倍,很厚的不锈钢内胆很不利于锥体的传热,降低了双锥的加热干燥效率,驱动很重的内胆自然要增加驱动电动机的功率。双锥的外夹套更厚更重,更增加了驱动电动机的能耗。双锥一年运转时间在几千小时,所以如何正确对待长时间运转的双锥提高效率和节能降耗,在全世界都在积极动员研究节能的新时代,对以往一直被忽视的设备结构和设备材料,很值得我们深入研究讨论.
以下按无GMP要求的双锥进行讨论。
2 双锥的放大
随着精细化工产品的发展,越来越需要高效率大型化的双锥。一台传统大型双锥,它的庞大身躯外形和它含有的加热面积极不相称,一台5 m 双锥的加热面积仅18 m ,F/V值为3.6 m /m ,而一台10 m 双锥的F/V值进一步下降至2.5 m /m ,用外强中干来形容双锥一点也不为过。
双锥真空干燥机的放大自然是指热交换面积的放大。所幸锥体内有庞大的空间可以利用,如何利用好此空间是关键。考虑到设备的清洗,热交换元件的表面愈简单愈好。选用薄形空 c,Di~热板,既符合表面光洁易洗又符合紧凑双重要求。以10 m 双锥为例,可以在硕大的锥体空间顺物料流动的方向设薄形内加热板,在留有供清洗和必要的维修空间,如内加热板之间保留110~160 mm间距,一般增加内加热板面积可比原有的锥体加热面积多1.5~3倍,使双锥的F,V值都能提高到0.2 m。小型双锥相似的9.0 m /m 值。特别是内加热板材厚度不到锥体厚度三分之一,换来加热面积成倍增长而热阻大幅度减小,使放大后的双锥干燥效率超过传统双锥的2~3倍以上。设内加热板后10 m 双锥体内结构如图1.
由图1说明,10 m。锥体的直径 2,600,在600 mm宽的维修通道两侧设由# l~≠}7内加热板各7块,共14块, 内加热板总面积F=56 m , 内加热板厚40 mm,内加热板总体积V=2.2 m ,两内加热板中心距d=200 mm,两内加热板之间的实际问隙为160 mm,已知锥体夹套加热面积F=29.6 m ,所以10 m 双锥加热总面积F=85.6 m , 已知锥体的容积V=12.1 m ,扣除内加热板后的锥体实际容积V=9.9m ,由此知新双锥的F/V值达8.6 m /m ,十分接近小型0.2 in 双锥的9.0 1TI /m 。10 1TI 双锥不加内加热板时的F/V值为2.5 II1 /m ,故增加内加热板后的10 1TI。双锥比不加的F/V值足足提高了3倍以上(如图2所示),如果按F/V值的提高来论,一台新双锥的干燥效率就可抵3台的传统双锥,单每小时驱动电机就可节省60 kW/h左右的电耗。
3 大型双锥增加内加热板对节省不锈钢的比较
仍以10 m (实际操作容积)为例。10 m 双锥的外形尺寸为 2600 X 3600(总高)。由上述说明双锥体加热夹套面积F=29.6 in ,内加热板总面积F=56 1TI ,如果双锥体的壁厚为14 mill,而内加热板的壁厚为3 mm,则双锥体的不锈钢材重量为3-3 t,而内加热板的不锈钢材重量为1.34 t。由此可知,每平方米双锥体需要111.4 kg不锈钢材,而每平方米内加热板需要的不锈钢材量仅为24 kg,即双锥体每平方米加热面积消耗的不锈钢材量比同样加热面积的内加热板多4.6倍。仅从现有大型传统双锥拥有的加热面积~IE4,,而消耗的不锈钢材量很多这种特殊的情况考虑,锥体内空洞无物,既有条件增加内加热板,也十分需要增加内加热板,以抵消锥体壁厚带来的负面影响。